Congruencia

CONGRUENCIA

 En matemáticas, dos figuras geométricas son congruentes si tienen las mismas dimensiones y la misma forma sin importar su posición u orientación, es decir, si existe una isometría que los relaciona: una transformación que puede ser de traslación, rotación o reflexión. Las partes relacionadas entre las figuras congruentes se llaman homólogas o correspondientes.

Definición de congruencia en geometría analítica

En la geometría euclidiana, la congruencia es equivalente a igualdad matemática en aritmética y álgebra. En geometría analítica, la congruencia puede ser definida así: dos figuras determinadas por puntos sobre un sistema y por de coordenadas cartesianas son congruentes si y solo si, la distancia euclidiana entre cualquier par de puntos de la primera figura es igual a la distancia euclidiana entre los puntos correspondientes de la segunda figura

Definición formal: Dos subconjuntos A y B de un espacio euclídeo son llamados congruentes si existe una isometría con .

 

Definición de congruencia en geometría analítica

En la geometría euclidiana, la congruencia es equivalente a igualdad matemática en aritmética y álgebra. En geometría analítica, la congruencia puede ser definida así: dos figuras determinadas por puntos sobre un sistema y por de coordenadas cartesianas son congruentes si y solo si, la distancia euclidiana entre cualquier par de puntos de la primera figura es igual a la distancia euclidiana entre los puntos correspondientes de la segunda figura

Definición formal: Dos subconjuntos A y B de un espacio euclídeo son llamados congruentes si existe una isometría con

Ángulos congruentes

Los ángulos opuestos son congruentes debido a que una rotación de 180° sobre su vértice hace coincidir uno y el otro.

Criterios de congruencia de triángulos

Criterios para establecer que dos triángulos sean congruentes con un mínimo de condiciones, a veces llamado de forma genérica postulados o teoremas de congruencia ya que aunque triviales se tienen que demostrar.234​ En principio se busca construir triángulos congruentes con el mínimo de información sobre este.

1. Caso AAL o ALA: Dos triángulos son congruentes si tienen iguales dos de sus ángulos respectivos y el lado entre ellos. En un triángulo si conocemos dos de sus ángulos el tercer ángulo queda unívocamente determinado.

2. Caso LAL: Dos triángulos son congruentes si tienen dos lados iguales y el mismo ángulo comprendido entre ellos.

3. Caso LLL: Dos triángulos son congruentes si tienen los tres lados iguales.

4. Caso LLA: Dos triángulos son congruentes si tienen dos lados y el ángulo sobre uno de ellos iguales. Este caso no es de congruencia si no damos más información sobre el triángulo, como la de ser triángulo rectángulo o si tiene o no ángulos obtusos.

No hay comentarios:

Publicar un comentario

modulo1

Portada

  Universidad Nacional Experimental  de los Llanos Occidentales  Ezequiel Zamora     MÓDULO III: ARITMÉTICA ENTERA Y MODULAR MÓDULO V: RECUR...